FtrLFV E1000

エンジンシリンダ流動試験装置

遂に登場! 世界初『可視化エンジン計測ユニット』 エンジン開発における新しいデファクト・スタンダードへ

2次元3成分ステレオPIV技術を導入し、エンジンスリーブ内部の流れを可視化解析する計測実験装置です。これまでの受託業務で積み重ねたノウハウを集約させ、コンパクト化したステレオPIV計測装置です。平均速度、乱流、平均タンブル比、平均スワール比など様々な特性値について、撮影準備からレポート作成までサポートします。

安全対策と自動化された計測作業

レーザ装置・光路・エンジンスリーブ・トレーサ粒子発生器を装置筐体内に収納しているため、レーザ光を見ることなく、かつトレーサ粒子にも晒されることなく、安全に計測作業をすることができます。また、計測作業からPIVデータ解析結果出力まで最大限自動化することで、PIVの経験が無い方も簡単に結果が得られます。

特徵

- ステレオPIVに最適化された撮影部
- 多様な供試体の仕様に対応する助走部
- 安全性と利便性を兼ね揃えたレーザ光学システム
- 気流計測の質を高めるトレーサー粒子発生器
- ・ PIV計測に最適な仕様で構成されたシステム制御装置
- ・ 直感的なシステム操作盤
- ・ 使いやすさを追求した独自開発の専用ソフトウェア「FtrLFV E1000」
- 様々な場面を考慮した安全対策

ステレオPIVに最適化された撮影部

PIVカメラは、計測したいスリーブの輪切り断面の位置やスリーブの大き さの変更に対応するようセッティングされ、ユーザによるカメラの調整 (角度、位置、高さ)が不要です(一部仕様外のテスト条件については、 別途ご相談)。

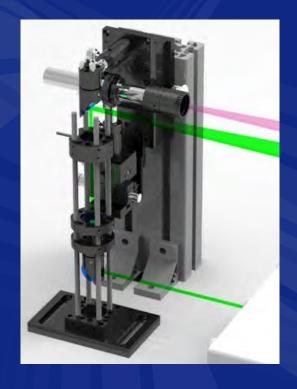
様々な供試体に対応する助走部

可動と交換機構を有する助走部は、インマニ側への流 体と整流すると共に、インマニポートの長さ、吸口の 形状や角度に合わせて様々なセッティングに柔軟に対 応します。

既存の実験環境へ接続対応

一般規格を採用し、既存設備(送風機、フロースタン ド、工場エア、排気ダクトなど)へ簡単に接続が出来ま す。既存設備からのデータ(圧力、温度など)取り込み、 連動機能などのカスタマイズが可能です(既存設備と の連動については、別途ご相談)。

■ 安全性を高めたレーザ光学システム


計測用シート光を最低限のスペースで作り出すビーム折返し構造を採 用し、システムのコンパクト化を実現。光学系の垂直トラバースシス テムにより、計測したいスリーブの輪切り断面の高さを自由に変えら れます。より安全な作業環境を作るため、補助レーザ(クラス2)を導 入し、計測用高輝度レーザ(クラス4)を照射することなく、計測断面 の位置調整が可能です。また、計測断面の切替え(水平/垂直)も出来 ます(別途ご相談)。

トレーサ粒子発生器を装備

気流計測に最適なシーディングを供給する オイルミスト発生装置です。

安全な食用油を使用し、流れの可視化に必 要な粒子を作ります(0.05~0.3MPaのエア 一の供給が必要です)。

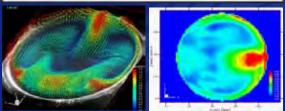
■ システム専用制御装置

本計測装置には、遅延信号発生装置、制御用・演算用パソコン、モニタ、キーボード、マウス、無停電電源装置、制御盤、専用ディレイパルス発生装置が納められています。専用の制御・解析ソフト『FtrLFV』により、粒子画像の撮影コントロール、独自開発のPIV解析エンジンを利用した高速演算、PIVデータ解析作業などが最適の仕様で構成されています。

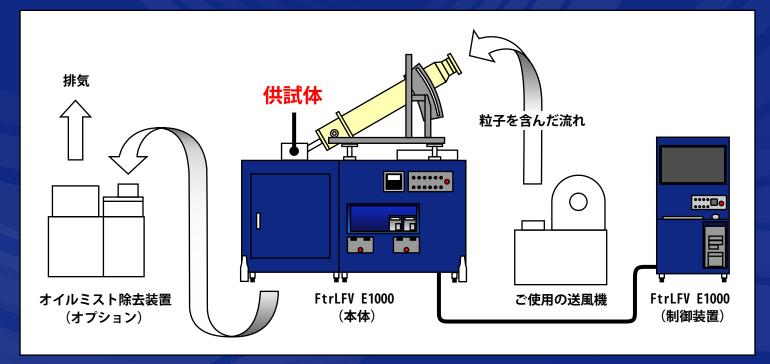
■ 直感的なシステム操作盤 (システム本体)

各装置の運用状況が分かりやすく、操作しや すいインターフェイスです。流路の圧力や温 度などの実験環境情報も確認できます。

■ FtrLFV E1000 作業プロシージャコントローラ


今までなかったものを、誰もが使える形で

豊富な受託業務によって培われた技術ノウハウを結集し、高度に最適化されたオール・イン・ワンのソフトウェアシステムです。


誰でも使える、究極のPIV実験装置を追求

解析作業における各種パラメータの調整は、一切不要です。 定められた順序に従い、簡単な工程を進めるだけで、実験・ 解析経験が少ない方でも、熟練者に匹敵する結果を短時間で 得ることができます。

■ システム使用事例

■ 安全対策

- ・レーザ光に対する安全対策 (1) レーザシャッタ (2) 各部シール
- ・システム制御装置側UPS機能

- ・食用油ミストの試験装置からの漏出防止
- ・計測断面セッティング用補助レーザ(1mW、クラス2)
- •緊急停止機能
- ・実験環境への各種アラームシステムのカスタマイズ可能。 (装置カバーオープンアラーム、実験室ドアオープンアラーム、排気ダクト停止アラーム等)

システムの基本仕様

流動計測原理	:ステレオPIV(2次元3成分測定)					
適用流体	:空気(ワーク側6kPa程度、最大25kPa程度、常温)					
トレーサ粒子	:食用油ミスト(専用オイルミスト発生装置使用)					
観察視野	:概ね最大95mm×95mm					
測定物理量	:・スリーブ輪切り断面内の平均速度3成分、乱流量(乱流エネルギー、乱流強度、レイノルズ応力)					
	・タンブル比、平均タンブル比 ・スワール比、平均スワール比					
	・上流チャンバと下流タンクの圧力と温度					
測定結果の出力	:・全ての測定物理量、試験条件、付加情報などを、エクセルで入力可能なテキストフォーマットで出力(※1)					
	※1 グラフィカル出力を含む。カスタマイズ可能。 ※2 ステレオPIV計測のためのカメラ校正作業は対象外					
既存設備との接続性	:保有する試験装置からの押し込み送風が可能					

製品仕様

《カメラ》							
撮像素子	:2/3型白黒	有効映像画素数	: 1600 (H) × 1200 (V)	画素サイズ	: 5.5(H) ×5.5(V) μm		
最低被写体照度	: 2.71x	標準被写体照度	: 26501x	PIV撮影時露光時間	:10µs~31.04ms(可変)		
PIV撮影2時刻時間分解機能	::1µs以下	レンズマウント	: (マウント	水平周波数全画素読み出し時	: 49. 896kHz		
映像出力コネクタ	:Ethernet 1000BASE-T RJ-45	ピクセルクロック	: 48MHz	走査方式	:プログレッシブスキャン		
マニュアルゲイン	: -3dB∼+24dB	S/N	:57dB以上(Gain=0dB)	フレームレート全画素読み出し時	: 40fps		
入力信号	: OPT IN x2、TTL IN x1、LVDS IN X1	電力入力	:AC100V ACアダプタ	質量	: 320g		
外形寸法(mm)	: 55 (H)×55 (W)×69 (D) (突起物含まず)						
《レーザ》							
パルス幅@1064	: 7∼9ns	繰返し周波数	: 20Hz	ビーム径	: <u>≦</u> 5mm		
ジッタ	:±1. 0ns	出力安定	: ±3.0 @1064nm	出力エネルギー(532nm)	: 120mJ		
ビーム拡がり角(全角)	: 1.5mrad	ビーム位置安定性	: N/A	レーザヘッド寸法(mm)	: 75(H) × 128(W) × 447(L)		
電源寸法(mm)	:280(H)×364(W)×391(L)(冷却器	一 体)					
入力	:BNCコネクタ 5V C-MOSレベル又はオープンコレクタ入力 *トリガ:プルアップ有無の選択可能 READY:10KΩプルアップ有						
出力	:BNCコネクタ 5V C-MOSレベル出力						
通信ポート	:Ethernet 10BASE10/100 RJ-45	rnet 10BASE10/100 RJ-45			: AC100V~220V 50/60Hz		
外形寸法(mm)	: 44(H)×350(W)×300(D) (突起物含まず)			質量	: 3. 2kg		
オイル容量	:最大800cc	粒径分布	:1∼5µm	中心粒径	: 2~3μm		
接続チューブ外径	: 8mm	リリーフバルブ作動E	E∶6. 1kgf/cm³				
角度調整範囲	: 13∼35 degree	定流区間の長さ	: 1m	流れ発生器との接続	: U-PVC 10K 100A		
対応流速	:最大100m/s						
電源	: AC 200V (設備に合わせて変更可能) 、30A						
観察視野	:概ね最大95mm×95mm	本体寸法(mm) :2	115 (H) ×2117 (W) ×1005 (D)	制御装置寸法(mm)	: 1607 (H) ×800 (W) ×800 (D)		
<pre> «FtrLFV E1000»</pre>							
	:FtrCAM、ISCC3、FtrPIV、サードハ	ペーニッ制可担化地面	ソフトウェア				
同梱ソフトウェア	· FUTCAM, ISCCS, FUTPIV, U-F/	ハーティ製可税に抽画					

※本装置の開発にあたり平成25年度神奈川県中小企業新商品開発等支援事業補助金を受けました。

株式会社フローテック・リサーチ

〒223-0057 神奈川県横浜市港北区新羽町789-2 TEL 045-716-8361 FAX 045-716-8362 E-mail support@ft-r.jp http://www.ft-r.jp